

NASA-AISRP YEAR 2 ANNUAL REPORT

 Report Period: 10/1/2005-9/30/2006
Grant No: NNG05GA30G

Estimating Missing Data in Sensor Network Databases

Using Data Mining to Support Space Data Analysis

Le Gruenwald
University of Oklahoma

School of Computer Science
200 Felgar Street, Room 116 EL

Norman, OK 73019
Phone: 405-623-8358

Fax: 405-325-4044
Email: ggruenwald@ou.edu

1. PROJECT ACCOMPLISHMENTS

In Year 2 of the project, we were able to complete the following tasks:

• Developed an algorithm called FARM (Freshness Association Rule Mining) to estimate
missing sensor data in sensor networks, taking the temporal dimension of sensor data into
consideration.

• Conducted an investigation of existing sensor data estimation techniques to compare with
FARM and with another data estimation technique that we developed in Year 1, called
WARM (Window Association Rule Mining).

• Investigated data and applications used in the NASA/JPL Sensor Webs project.
• Implemented FARM and existing sensor data estimation techniques and conducted

experiments to compare FARM, WARM and those techniques using NASA/JPL Sensor
Webs project’s data and traffic data in Austin, Texas.

• Developed a data mining algorithm that deals with concept drifting when classifying data
streams; implemented and compared it with the two existing data stream classification
algorithms, VFDT and CVFDT.

• Developed an algorithm and data structures to mine closed frequent itemsets for data
streams.

• Helped one Computer Science PhD student who is funded by this grant, Nan Jiang,
complete her PhD Advisory Conference successfully.

• Helped one Computer Science Master’s student who was not funded by this grant but
contributed to the project by working on a Master’s thesis on a related research topic,
Biao Liu, complete his Master’s thesis successfully.

• Published one journal paper and two conference/workshop papers, submitted one
conference paper for publication, and had one journal paper under preparation.

In the following sections, we provide the details of the above tasks.

 1

1.1. Developed an algorithm called FARM (Freshness Association Rule Mining) to estimate
missing sensor data for a sensor network, taking the temporal dimension of sensor data
into consideration

Our previous work in Year 1 on data streams estimation resulted in an algorithm called WARM
(Association Rule Mining). WARM uses association rule mining concepts to estimate the
missing sensor data readings in data streams. It identifies the sensors in the network that are
related to the sensor with the missing data reading, and then uses the current readings of those
related sensors to estimate the missing data reading of the missing sensor in the current round.
WARM makes use of the sliding window concept, where only the last w rounds of data readings
are stored. After receiving the first w rounds, every time a new round arrives, the oldest round
data is discarded. In WARM, all the stored w rounds have the same importance in the estimation
of the missing sensor data readings. In order to store the most recent data round and the
relationships among sensors in the last w rounds, WARM uses three data structures – the Buffer,
the Cube, and the Counter. To update the data structures, three algorithms were developed to
estimate the missing sensor data reading – the checkBuffer, the update, and the estimateValue.

However, WARM has a number of deficiencies. First WARM has two relatively complicated
data structures, the Cube and the Counter, that consume extra memory space and, at the same
time, result in more time to estimate because of the need to update them after every new round of
sensor data readings arrives. Second, it is possible in WARM to have more than one estimated
value for one missing value where we end up choosing an estimated value randomly, which is
not desirable. Third, freshness of data is not considered appropriately in WARM. By freshness of
data, we mean that new data is more important than old data as in weather applications. In
WARM, only the last w rounds in the sliding window are considered in estimation, but the effect
of the sliding window size on estimation is not taken into account. In addition, all the rounds
stored in the sliding window have the same importance; this means that if the sliding window
size is big, the current round has the same estimation effect as the last round in the sliding
window, which is not appropriate for many real-time applications such as climate applications.
Fourth, WARM can only answer queries related to the data stored in the sliding window. Since
we should scan the data in data streams only once, WARM stores only the last w rounds and
disregards all other rounds. For that, there is no way to respond to user queries related to the past
data.

In Year 2, we developed a data estimation approach, called FARM (Freshness Association Rule
Mining) that aims to eliminate WARM’s deficiencies. Like WARM, FARM also uses
association rule mining to identify the sensors that are related to the sensor with a missing value
and uses the data readings of those sensors to estimate the missing value in the current round.
FARM takes freshness of data into consideration, which is crucial in many real-time applications
where recent data is more important than old data in the estimation of the missing value that
occurs in the most recent round of data readings. To consider freshness of data, all rounds of data
readings in FARM participate in the estimation process, where each round has a different level of
contribution (called weight) to the estimation value. The weight of a round (x) is p times of the
weight of the previous round (x-1), where p is a user-defined value greater than 1, called a
damped factor. This factor represents the importance of a round of data readings compared with
the previous one in the estimation process. The order x reflects the recency of the data in that

 2

round. The more recent the data are, the higher weight they have, and subsequently, the more
they will contribute to the calculation of the estimated values for the missing data. In order to
estimate, FARM determines the sensors that are related to the sensor with the missing value so
that they can participate in the estimation of the missing sensor data reading. To store the most
recent data round and the relationships between every pair of sensors, FARM uses the Buffer and
the 2D Ragged Array of Objects. To estimate the missing data, FARM employs three algorithms
– checkBuffer, update, and estimateValue – as in WARM but with appropriate modifications to
reflect the changes in data mining and data structures.

An added advantage of FARM is that by using the weights of the states of the diagonal entries in
the two dimensional ragged array of objects, the Retrieve Data algorithm in FARM is able to
retrieve the whole data again at any point in time, and thus, can respond to all user queries. This
eliminates the problem associated with data stream applications where no limited memory can
hold the whole data streams because memory is limited and data streams arrive continuously.
That problem exists in WARM: there is no way to access the whole data again; i.e., WARM can
not answer queries related to the data that is not stored in the window.

1.2. Conducted an investigation of existing sensor data estimation techniques to compare
with FARM and with another data estimation technique that we developed in Year 1,
called WARM (Window Association Rule Mining)

In Year 1, we identified a number of popular statistical methods for data estimation existing in
the literature [Allison 2002; Dempster, 1977; Gelman, 1995; Iannacchione, 1982; McLachlan,
1997; Rubin, 1987; Rubin, 1996; Shafer, 1995], such as Mean Substitution, Simple Linear
Regression, Cold Deck Imputation, Hot Deck Imputation, and Expectation Maximization,
Maximum Likelihood, and Multiple Imputations. In Year 2, we investigated further into the
following existing techniques that handle missing sensor/stream data. In the NASA/JPL Sensor
Webs project [NASA, 2006], if one sensor fails, its neighboring sensors compensate for the last
data by increasing their sampling rates. There are several disadvantages with this approach. First,
there must be a tight collaboration among sensors for a sensor to know that its neighboring
sensor has failed. This increases power consumption on every sensor even during its normal
operation and, thus, is impractical for sensor networks where data missing/corruption is expected
not to be a rare occurrence. Second, the approach does not address how sampling rates of
neighboring sensors should be adjusted in order to guarantee a good quality of service in terms of
data accuracy, query real-time constraints as well as sensors’ power consumption. And third, if
several sensors that are next to each other, say S2, S3, and S4, fail at the same time, which is
possible in some harsh environments like the Mars planet, adjusting the sampling rates of S1 and
S5 would not compensate for the data lost caused by S3, assuming that S1 is next to S2 and S5 is
next to S4.

Some probabilistic models, such the BBQ system [Deshpande, 2005], are designed to predict
missing values in data streams. The BBQ system is learned from a set of training data which
consist of the readings of all monitored attributes of data streams over a period of time. During
the training period, the system computes the initial correlations between the monitored attributes
in order to build its basic model. After training, the system adjusts the initial correlations every
time new values for the monitored attributes are observed. The BBQ system has two

 3

disadvantages. First, it may take a lot of time to build the basic model during the training period
if some missing values exist in the training data. Second, it cannot answer user queries before
building the basic model; i.e., estimation of missing values cannot be performed before the basic
model is constructed.

SPIRIT [Papadimitriou, 2005] uses auto-regression as its basic forecasting model to estimate
missing values in data streams. SPIRIT spots correlations on numerical streams and extracts the
hidden variables that summarize the key trends in the entire stream collection. To estimate the
missing values, SPIRIT applies auto-regression on the extracted hidden variables and uses the
results to predict the values of the missing data. So, whenever there is a missing value in any
round of data, SPIRIT uses the forecast based on the values in the previous round to estimate the
missing values in the current round. One of the disadvantages with estimation using SPIRIT is
related to the accuracy of estimation. It is true that SPIRIT estimates very fast and consumes just
a little memory space, but its accuracy is not as good as other estimation techniques.

TinyDB [Madden, 2005] is a query processing system for extracting information from a network
of special type of sensors. Given a query specifying the user data interests, TinyDB collects that
data from motes in the environment, filters it, aggregates it together, and routes it out to a PC.
TinyDB does this via power-efficient in-network processing algorithms. TinyDB estimates the
missing values by taking the average of all the values reported by the other sensors in the current
round. This approach has many disadvantages: First, the accuracy of this approach is in doubt
because only the readings of other sensors at the current round are used to estimate the missing
sensor value; it may be that the missing sensor is not related at all to those other sensors. Second,
this approach will have bad accuracy results especially if there is multiple sensors failure at the
same time; and more specifically, if related sensors miss their value at the same time.

1.3. Investigated data and applications used in the NASA/JPL Sensor Webs project

Examining data and applications used by the NASA/JPL Sensor Webs project [NASA, 2006],
we were able to identify a dataset that we can use to test our algorithms for sensor data
applications in which data freshness is important. The dataset consists of 13 sensors where all
sensors also report their data readings to a single server every 5 minutes. The sensors are
embedded in the Huntington Botanical Gardens in San Marino, California. The sensors report the
air temperature of several places in the gardens for different time intervals. The actual sensors’
readings are used as an input data to our simulation. Using this dataset, we want to study the
effect of freshness of data since this is a climate dataset and the importance of data recency is
reflected here. For example, in this dataset, there is a great possibility that the air temperature
reported by a certain sensor at 6:00 pm, for instance, is the same as the air temperature reported
by the same sensor at 6:05 pm.

 4

1.4. Implemented FARM and existing data estimation techniques and conducted
experiments to compare FARM, WARM and those techniques using NASA/JPL Sensor
Webs Project’s dataset and Austin’s Traffic Dataset

We wrote Java programs to implement FARM and existing data estimation techniques. We
then conducted simulation experiments to compare the performances of FARM and WARM with
SPIRIT, TinyDB, and four statistical estimation methods: (1) The Simple Linear Regression
(SLR) approach: using estimated value based on the readings stored in the data model of this
particular sensor and its next neighbor, (2) The Multiple Linear Regression (MLR) approach:
using estimated value based on the readings stored in the data model of this particular sensor and
its next 10 neighbors, (3) The Curve Regression (CE) approach: using estimated value based on
the readings stored in the data model of this particular sensor and its next neighbor, and (4) The
Average estimation approach: using the average of all the past readings for the sensor with the
missing value in the current round as an estimate. The performance metrics include estimation
accuracy, estimation inability that represents the percentage of cases that cannot be estimated by
the estimateValue algorithm alone, execution time, and storage space. We used both the
NASA/JPL Sensor Webs Project’s dataset as well as the traffic data collected by the Department
of Transportation in Austin, Texas [Austin, 2005]. The results, as demonstrated through Tables
1 – 6, can be summarized as follows. For applications where recent data is more important than
old data, FARM yields the best accuracy. For applications where old data is as important as
recent data, WARM yields the best accuracy. SLR has the best execution time and SPIRIT
consumes the least storage space. The statistical approaches can estimate very fast and consume
little memory space but they all fail to satisfy the accurate estimation property. Therefore, the
statistical approaches do not fit most applications where accuracy cannot be sacrificed. SPIRIT
also estimates very fast and consumes the least memory space, but it fails to satisfy the accurate
estimation property for applications where freshness of data is considered. Both FARM and
WARM have feasible storage space and acceptable estimation speed for all applications.
However, their accuracy differs according to the types of applications. For applications where
recent data is more important than old data, FARM gives the overall best results. For
applications where old data is as important as recent data, WARM should be used.

Table 1. Estimation Error for NASA data set
 Estimation Error

for NASA data
How many % the
best approach is

better?

FARM 0.00487 Best Approach
WARM 0.00636 23.43%
TinyDB 0.0085 42.71%
SPIRIT 0.0116 58.02%
Average 0.015 67.53%

MLR 0.121 95.98%
SLR 0.342 98.58%
CE 0.346 98.59%

 5

Table 2. Estimation Error for traffic data set
 Estimation Error

for traffic data
How many % the
best approach is

better?
WARM 0.090 Best Approach
SPIRIT 0.0932 3.43%
FARM 0.134 32.84%
TinyDB 0.137 34.31%
Average 0.1445 37.72%

MLR 0.493 81.74%
CE 2.253 96.01%

SLR 2.286 96.06

Table 3. Execution time for NASA data
 Execution time for

NASA data
(seconds)

How many % the
best approach is

better?
SLR 0.044 Best Approach
CE 0.049 10.2%

MLR 0.059 25.42%
SPIRIT 0.161 72.67%
Average 0.200 78%
TinyDB 0.210 79.04%
FARM 0.261 83.14%
WARM 0.301 85.38%

Table 4. Execution time for traffic data
 Execution time for

traffic data
(seconds)

How many % the
best approach is

better?
SLR 0.053 Best Approach
CE 0.061 13.11%

MLR 0.085 37.65%
SPIRIT 0.270 80.37%
TinyDB 0.309 82.85%
Average 0.449 88.2%
FARM 0.621 91.47%
WARM 3.145 98.31%

Table 5. Storage Space for NASA data
 Storage Space for

NASA data (KB)
How many % the
best approach is

better?
SPIRIT 0.1 Best Approach

Average, TinyDB 0.15 33.33%
SLR 1.32 92.42%
CE 1.32 92.42%

MLR 5.22 98.08%
FARM 43.1 99.77%
WARM 119.21 99.92%

 6

Table 6. Storage Space for traffic data
 Storage Space for

traffic data (KB)
How many % the
best approach is

better?
SPIRIT 0.85 Best Approach

Average, TinyDB 1.27 33.07%
SLR 3.12 72.76%
CE 3.12 72.76%

MLR 5.47 84.47%
FARM 911 99.91%
WARM 5013 99.98%

1.5. Developed a data mining algorithm that deals with concept drifting when classifying
data streams; implemented and compared it with the two existing data stream classification
algorithms, VFDT and CVFDT

Many recent applications like sensor networks and network traffic monitoring system generate
data streams that continuously arrive in high speed. The logic of data generation, or the concept
that we try to learn from the data, might be constantly changing over time. This is known as
concept drifting. Existing techniques for classifying data streams assume that either no concept
drifting happens, or concept drifting frequently occurs, and thus, spend a large amount of system
resources to monitor their target models for changes. However, both assumptions are not
necessarily true in real-word applications. As a result, existing techniques either cannot handle
concept drifting if it does occur, or waste tremendous precious system resources if concept
remains stationary. Addressing this issue, in Year 2, we introduced a concept-drifting indicator
and developed a new algorithm, called CSDI. Instead of monitoring the entire target model,
which is expensive and impractical, we only monitor this indicator, and check the target model
only when the indicator reveals concept drifting. Because tracking the concept-drifting indicator
only needs a very small amount of system resources, our algorithm can remain efficient
regardless of whether the concept is drifting or stationary.

CSDI works as follows. It first uses the existing algorithm, called VFDT[], to construct an
initial decision tree, and then uses this initial decision tree to classify the succeeding chunk of
sample records to obtain the normal concept-drifting indicator. The concept-drifting indicator is
the error rate that measures the accuracy of the constructed decision tree in classifying records,
and the concept-drifting indicator that is obtained initially when no concept drifting has occurred
is called the normal concept-drifting indicator or normal error rate. Based on the obtained
normal concept-drifting indicator and a user-defined indicator factor, CSDI then computes the
concept-drifting threshold that is the upper bound of the normal concept-drifting indicator.
Concept drifting is believed to have occurred if the concept-drifting indicator reaches the
threshold. After initialization, CSDI starts to classify records by using the initial decision tree
and to count the number of records that were classified incorrectly on each node. CSDI
periodically (for each checking interval) checks the concept-drifting indicator to detect concept
drifting. If concept drifting is detected, CSDI will start the searching process to locate all the
invalid nodes under the new concept, and then update the tree.

We conducted experiments comparing CSDI with two existing algorithms, VFDT [Domingos,
2000] and CVFDT [Hulten, 2001], using both synthetic and real data. We obtained the

 7

following results. If no concept drifting happens, VFDT is the best among the compared
algorithms. But if there is concept drifting, the accuracy of VFDT decreases drastically and
cannot be accepted. Although CVFDT can handle concept drifting, it uses too much system
resource no matter whether or not there is concept drifting or how often concept drifting occurs.
Our algorithm, CSDI, uses a little more system resource but achieves more accuracy and much
more efficiency than CVFDT does. Therefore, CSDI can remain efficient and accurate regardless
of whether there is concept drifting or not. Also CSDI can scale up very well when the number
of attributes in data streams increases. Figure 1 shows the performance comparison in terms of
classification error rate when the number of times that concept drifting occurs is varied.

0

5

10

15

20

25

30

0 5 10 15 20
Number of Times Concept Drifting Occurs

C
la

ss
ific

at
io

n
Er

ro
r R

at
e(

%
) VFDT

CVFDT
CSDI

Figure 1: The effect of number of times concept drifting occurs on

the classification error rate

In Year 3, we plan to incorporate this algorithm into FARM to improve data estimation.

1.6. Developed an algorithm and data structures to mine closed frequent itemsets for data
streams

Our data estimation techniques, both WARM and FARM, rely on the ability of our modified
Apriori algorithm to discover association rules among sensors. However, the modified
algorithm is based on frequent itemsets, and thus consumes a lot of time and space. To reduce
those overheads, we use the concept of frequent closed itemsets instead. Mining frequent closed
itemsets provides complete and condensed information for non-redundant association rules
generation. Extensive studies have been done on mining frequent closed itemsets, but they are
mainly intended for traditional transaction databases, and thus do not take data stream
characteristics into consideration. In Year 2, we developed a novel approach for mining closed
frequent itemsets over data streams, called CFI-Stream. It computes and maintains closed
itemsets online and incrementally, and can output the current closed frequent itemsets in real
time based on users’ specified thresholds. When a transaction arrives or leaves the current data
stream sliding window, the algorithm checks each itemset in the transaction on the fly and
updates the associated closed itemsets’ supports. Current closed itemsets are maintained and
updated in real time in a lexicographical ordered tree data structure, called DIU (Direct Update)
tree. Each node in the DIU tree represents a closed itemset. There are k levels in the DIU tree;

 8

each level i stores the closed i-itemsets. The parameter k is the maximum length of the current
closed itemsets. Each node in the DIU tree stores a closed itemset, its current support
information, and the links to its immediate parent and children nodes.

Different from previous closure checking techniques which require multiple scans over data [Pei,
2000; Chang, 2003; Xu, 2004; Lin, 2005], our method performs the closure checking on the fly
with only one scan over data streams. It updates only the supports of the associated closed
itemsets in the DIU tree online, which reduces the computation time and provides real time
updated results. Our algorithm is an incremental algorithm where we check for closed itemsets
and update their associated supports based on the previous mining results. This is more efficient
as compared with mining approaches that rescan and regenerate all closed itemsets when a new
transaction arrives.

Compared with other data stream mining techniques [Manku, 2002; Chi, 2004; Lin, 2005] etc.,
we only store the information of current closed itemsets in the DIU tree, which is a compact and
complete representation of all itemsets and their support information. The current closed frequent
itemsets can be output in real time based on users’ specified thresholds by browsing the DIU
tree. Also, our algorithm handles the concept-drifting problem in data streams by storing all
current closed itemsets in the DIU tree from which all itemsets and their support information can
be incrementally updated.

We compared our algorithm with Moment [Chi, 2004], which is the current state-of-the-art
algorithm to mine closed itemsets in data streams. For the performance study, two synthetic
datasets T10.I6.D100K and T5.I4.D100K-AB were used. Experimental results show that our
method can achieve better performance than Moment in terms of both time and space efficiency,
especially when the minimum support is low and the datasets is dense. Figure 2 illustrates the
runtime performance comparison of the two algorithms for one of the datasets.

0.01

0.1

1

10

100

0 0.1 0.2 0.3 0.4 0.5 0.6

The Minimum Support (%)

R
un

ni
ng

 T
im

e
(s

ec
)

Moment
CFI-Stream

Figure 2. Runtime of CFI-Stream and Moment using the T10.I6.D100K data set

 9

 10

2. CHALLENGES

The major challenge that we faced in Year 2 was how to obtain appropriate datasets for our
performance studies. We contacted the NASA/JPL research staff and carefully studied their
Sensor Webs project in detail. We finally were able to obtain an appropriate dataset that we
could use. But to evaluate the scalability of our algorithms, we would need larger datasets than
the one we had. In addition, we also would need to investigate queries on sensor data and
implement those queries in our simulation models in order to study the effects of data estimation
algorithms on response time of real-life queries.

3. PLANS FOR NEXT YEAR

In Year 3, we plan to work on the following tasks:

• Revise FARM to include spatial data mining.
• Work with NASA scientists to incorporate NASA data semantics into FARM.
• Conduct a theoretical analysis of FARM.
• Collect additional NASA data and queries aand conduct further performance evaluations.
• Extend FARM to include distributed sensor networks and mobile sensor networks.
• Conduct theoretical analysis and experiments comparing FARM with existing data

estimation techniques for distributed sensor networks and mobile sensor networks using
NASA data and synthetic data.

• Incorporate classification, clustering, and frequent closed items association rule mining
into FARM to improve data estimation.

4. PUBLICATIONS AND PRESENTATIONS

• NNaann JJiiaanngg aanndd LLee GGrruueennwwaalldd,, ““RReesseeaarrcchh IIssssuueess iinn AAssssoocciiaattiioonn RRuullee MMiinniinngg ffoorr DDaattaa
SSttrreeaammss,,”” SSIIGGMMOODD RREECCOORRDD,, VVooll.. 3355,, NNoo.. 11,, MMaarrcchh 22000066..

•• BBiiaaoo LLiiuu,, ““Classify Data Streams using Concept-Drifting Detection Indicator,” Master’s
Thesis, School of Computer Science, University of Oklahoma, May 2006.

•• NNaann JJiiaanngg aanndd LLee GGrruueennwwaalldd,, ““CCFFII –– SSttrreeaamm:: MMiinniinngg CClloosseedd FFrreeqquueenntt IItteemmsseettss iinn DDaattaa
SSttrreeaammss,,”” aacccceepptteedd ffoorr ppuubblliiccaattiioonn iinn tthhee pprroocceeeeddiinnggss ooff tthhee AACCMM IInntteerrnnaattiioonnaall
CCoonnffeerreennccee oonn KKnnoowwlleeddggee aanndd DDaattaa DDiissccoovveerryy ((KKDDDD)),, AAuugguusstt 22000066..

•• NNaann JJiiaanngg aanndd LLee GGrruueennwwaalldd,, ““AAnn EEffffiicciieenntt AAllggoorriitthhmm ttoo MMiinnee OOnnlliinnee DDaattaa SSttrreeaammss,,””
aacccceepptteedd ffoorr ppuubblliiccaattiioonn iinn tthhee pprroocceeeeddiinnggss ooff tthhee IInntteerrnnaattiioonnaall WWoorrkksshhoopp oonn TTeemmppoorraall
DDaattaa MMiinniinngg,, AAuugguusstt 22000066..

• MMaazzeenn AAbboouukkhhaammiiss aanndd LLee GGrruueennwwaalldd,, ““UUssiinngg DDaattaa MMiinniinngg ttoo EEssttiimmaattee MMiissssiinngg SSeennssoorr
DDaattaa,,”” ssuubbmmiitttteedd ttoo IIEEEEEE IInntteerrnnaattiioonnaall CCoonnffeerreennccee oonn DDaattaa EEnnggiinneeeerriinngg,, JJuullyy 22000066

• Biao Liu, Le Gruenwald, Nan Jiang and MMaazzeenn AAbboouukkhhaammiiss, “A Survey of Stream Data
Mining Techniques”, under preparation, to be submitted to Data and Knowledge
Engineering, 2006.

5. REFERENCES

[Agrawal, 1993] Rakesh Agrawal, Tomasz Imielinski, Arun Swami. “Mining Association Rules
between Sets of Items in Large Databases”, the ACM SIGMOD International Conference on
Management of Data, pp. 207-216, May 1993.

[Austin, 2005] Austin Freeway ITS Data Archive, http://asutindata.tamu.edu/default.asp,
accessed December 2005

[Chang, 2003] Joong Hyuk Chang, Won Suk Lee, Aoying Zhou. “Finding Recent Frequent
Itemsets Adaptively over Online Data Streams.” ACM SIGKDD Int'l Conf. on Knowledge
Discovery and Data Mining; August 2003.

[Chi, 2004] Yun Chi, Haixun Wang, Philip S. Yu, Richard R. “ Moment: Maintaining Closed
Frequent Itemsets over a Stream Sliding Window.” IEEE Int'l Conf. on Data Mining; November
2004.

[Dempster, 1977] A. Dempster, N. Laird, and D. Rubin. “Maximum Likelihood from Incomplete
Data via the EM Algorithm”, Journal of the Royal Statistical Society, Series B, 39(1), pages 1-
38, 1977.

[Deshpande, 2005] A. Deshpande, S. Madden, C. Guestrin. “Using Probabilistic Models for Data
Management in Acquisitional Environments.” CIDR, 2005.

[Domingos, 2000] P. Domingos and G. Hulten. “Mining high-speed data streams.” ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000, P71-80.

[Gelman, 1995] A. Gelman, J. Carlin, H. Stern, and D. Rubin. “Bayesian Data Analysis.
"Chapman & Hall, 1995.

[Hulten, 2001] G. Hulten, L. Spencer, P. Domingos. “Mining Time-Changing Data Streams.”
ACM International Conference on Knowledge Discovery and Data Mining, 2001, P97-106

[Lin, 2005] Chih-Hsiang Lin, Ding-Ying Chiu, Yi-Hung Wu, Arbee L. P. Chen. “Mining
Frequent Itemsets from Data Streams with a Time-Sensitive Sliding Window.” SIAM
International Conference on Data Mining; April 2005.

[Madden, 2005] S. Madden, M. Franklin, J. Hellerstein, W. Hong. “TinyDB: An Acquisitional
Query Processing System for Sensor Networks.” TODS, 2005.

[Manku, 2002] Gurmeet Singh Manku, Rajeev Motwani. “Approximate Frequency Counts over
Data Streams.” International Conference on Very Large Data Bases, 2002.

[McLachlan, 1997] G. McLachlan and K. Thriyambakam. “The EM Algorithm and Extensions”.
New York: John Wiley & Sons, 1997.

 11

http://asutindata.tamu.edu/default.asp

[NASA, 2006] NASA/JPL Sensor Webs Project, http://caupanga.huntington.org/swim/, accessed
Jan 2006.

[Papadimitriou, 2005] S. Papadimitriou, J. Sun, C. Faloutsos. “Pattern Discovery in Multiple
Time-Series.” International Conference on Very Large Data Bases, 2005, pp .697-708.

[Pei, 2000] J. Pei, J. Han, and R. Mao. “Closet: An efficient algorithm for mining frequent closed
itemsets.” SIGMOD International Workshop on Data Mining and Knowledge Discovery, May
2000.

[Rubin, 1987] D. Rubin, “Multiple Imputations for Nonresponce in Surveys”. New York: John
Wiley & Sons, 1987.

[Rubin, 1996] D. Rubin. “Multiple Imputations after 18 Years”, Journal of the American
Statistical Association, 91, pp. 473-478, 1996.

[Shafer, 1995] J. Shafer. “Model-Based Imputations of Census Short-Form Items”, The Annual
Research Conference, Washington, DC: Bureau of the Census, pages 267-299, 1995.

[Xu, 2004] Jeffrey Xu Yu, Zhihong Chong, Hongjun Lu, Aoying Zhou. “False Positive or False
Negative: Mining Frequent Itemsets from High Speed Transactional Data Streams.”
International Conference on Very Large Data Bases, 2004.

[Yi, 2000] B.-K. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish, C. Faloutsos, A. Biliris. On-
Line Data Mining for Co-Evolving Time Sequences, International Conference on Data
Engineering, 2000, pp. 13-22.

[Wang, 2003] Wang H., MiningConcept-Drifting Data Streams using Ensemble Classifiers. In
9th ACM International Conference on Knowledge Discovery and Data Mining SIGKDD, August
2003.

 12

http://caupanga.huntington.org/swim/

	Table 1. Estimation Error for NASA data set
	Table 2. Estimation Error for traffic data set

